博客
关于我
【2019.1.22】【背包】纪中C组T3——小明逛超市
阅读量:357 次
发布时间:2019-03-04

本文共 1306 字,大约阅读时间需要 4 分钟。

小明有n元钱,想要购买m种物品来最大化他的需求度。每种物品有两种类型:一种只能买一件(z=1),另一种可以买无限件(z=0)。每件物品都有价格x和需求度y。目标是用n元钱购买物品,使得总需求度最大化。

方法思路

这个问题可以通过动态规划来解决,具体来说,涉及到0-1背包和完全背包的结合。对于每种物品,根据其类型分别处理:

  • 0-1背包处理:对于只能买一件的物品(z=1),用逆向填充的方法,确保每件物品只能被选一次。
  • 完全背包处理:对于可以买无限件的物品(z=0),用正向填充的方法,允许多次购买同一物品。
  • 具体步骤如下:

  • 初始化一个大小为n+1的数组dp,dp[j]表示用j元钱能达到的最大需求度,初始值为0。
  • 遍历每个物品,根据其类型更新dp数组。
  • 最终,dp[n]即为用n元钱能达到的最大需求度。
  • 解决代码

    #include 
    #include
    using namespace std;int main() { int n, m; cin >> n >> m; int ans[n+1]; fill(ans, ans + n + 1, 0); // 初始化dp数组为0 for (int i = 1; i <= m; ++i) { int x, y, z; cin >> x >> y >> z; if (z == 1) { // 0-1背包:逆向填充 for (int j = n; j >= x; --j) { if (j - x >= 0 && ans[j] < ans[j - x] + y) { ans[j] = max(ans[j], ans[j - x] + y); } } } else { // 完全背包:正向填充 for (int j = x; j <= n; ++j) { if (ans[j] < ans[j - x] + y) { ans[j] = max(ans[j], ans[j - x] + y); } } } } cout << ans[n] << endl; return 0;}

    代码解释

  • 初始化ans数组初始化为0,表示初始时没有钱可以花。
  • 遍历物品:每个物品根据类型处理。
    • z=1:逆向从n到x遍历,确保每件物品只能选一次。
    • z=0:正向从x到n遍历,允许多次购买同一物品。
  • 更新dp数组:在每次循环中,更新当前金额能达到的最大需求度。
  • 输出结果:打印用n元钱能达到的最大需求度,即ans[n]
  • 这个方法确保在有限的预算内,最大化需求度,适用于混合背包问题的典型场景。

    转载地址:http://euug.baihongyu.com/

    你可能感兴趣的文章
    Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
    查看>>
    Nginx配置实例-负载均衡实例:平均访问多台服务器
    查看>>
    NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
    查看>>
    NIO ByteBuffer实现原理
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NIO基于UDP协议的网络编程
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NI笔试——大数加法
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>